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Abstract. We have performed the first global QCD analysis to include the CCFR and NuTeV dimuon
data, which provide direct constraints on the strange and antistrange parton distributions, s(x) and s̄(x).
To explore the strangeness sector, we adopt a general parametrization of the non-perturbative s(x), s̄(x)
functions satisfying basic QCD requirements. We find that the strangeness asymmetry, as represented by
the momentum integral [S−] ≡ ∫ 1

0 x[s(x)− s̄(x)]dx, is sensitive to the dimuon data provided the theoretical
QCD constraints are enforced. We use the Lagrange multiplier method to probe the quality of the global
fit as a function of [S−] and find −0.001 < [S−] < 0.004. Representative parton distribution sets spanning
this range are given. Comparisons with previous work are made.
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1 Introduction

The recent measurements of both neutrino and antineu-
trino production of dimuon final states (charm signal) by
the CCFR and NuTeV collaborations [1] provide the first
promising direct experimental constraints on the strange
and antistrange quark distributions of the nucleon, s(x)
and s̄(x). In addition to the intrinsic interest in the nucleon
structure [2], the strange asymmetry (s− s̄) has important
implications on the precision measurement of the Wein-
berg angle in deep inelastic scattering of neutrinos [3–8].
We report here the first global QCD analysis that includes
the new dimuon data, using the methods developed by the
CTEQ collaboration, specifically to explore the strange
and antistrange parton parameter space.1

In previous global analyses, information on s and s̄
has resided only in inclusive cross sections for neutral and
charged current DIS. The reliability of the extraction of
the quite small s and s̄ components2 (from differences of
large cross sections measured in different experiments) was
always in considerable doubt. For this reason, most global

1 A preliminary version of this study was reported at the
Lepton Photon 2003 International Symposium (LP2003), Fer-
milab, August 2003. Cf. Gambino [9] and Thorne [10], published
in the Proceedings of LP2003.

2 The strangeness content of the nucleon, as measured by
the momentum fraction carried by s or s, is of order 3% at
Q = 1.5 GeV.

fits adopted the assumption s(x) = s̄(x) = κ(ū + d̄)/2;
this approximation was inferred from the earlier combined
neutrino and antineutrino dimuon experiments [11] which
extract a consistent value of

κ ≡
∫

dx x
[
s(x,Q2) + s̄(x,Q2)

]
∫

dx x
[
ū(x,Q2) + d̄(x,Q2)

] ∼ 0.4 (1)

at some low value of Q. The recent high-statistics dimuon
measurements of [1] provide greater accuracy, and the high
purity of separate neutrino and antineutrino events offers
the first opportunity to study the difference s(x) − s̄(x).
Neutrino induced dimuon production, (ν/ν̄)N → µ+µ−X,
proceeds primarily through the subprocessesW+s → c and
W−s̄ → c̄ respectively, and hence provides independent
information on s and s̄.

We present the first global QCD analysis that includes
these new dimuon data. The new results demonstrate, first
of all, that the strangeness asymmetry, as measured by the
momentum integral

[S−] ≡
∫ 1

0
x[s(x) − s̄(x)]dx , (2)

is indeed more sensitive to the dimuon data than to the
other DIS data. We then use the recently developed La-
grange multiplier method of global analysis to explore the
range of uncertainty of [S−]. In this first report, we con-
centrate on [S−], the integrated strangeness asymmetry,
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which represents a new parton degree of freedom in the
nucleon heretofore largely unexplored, and which has im-
mediate impact on precision electroweak physics because
of the NuTeV anomaly [3]. A full exploration of the density
functions s(x) and s̄(x) will be presented later.

We begin by describing the general features of the
strangeness sector of the nucleon structure in the QCD
framework and our general parametrization of that sector.
A brief review and discussion of the pQCD calculations
that are relevant to the interpretation of the dimuon data
is then followed by the main results of the global analy-
sis, with emphasis on concrete representative global fits
relevant for probing the strangeness asymmetry and on
Lagrange multiplier results for the integrated momentum
asymmetry (2). This paper concludes with a summary of
the extensive studies performedbeyond the examples given,
comparisons to previous work on strangeness asymmetry,
and conclusions.

2 General properties of s(x) − s̄(x)
and its first two moments

Before we discuss the concrete fitting procedure and the
results in the following sections, we feel that it is instructive
to formulate the qualitative expectations that are based
on general QCD requirements (before any data).

2.1 Requirements

For each Q, let us define the strangeness number densities
s±(x) and their integrals [s

±
] by

[s±] ≡
∫ 1

0
s±(x) dx ≡

∫ 1

0
[s(x) ± s̄(x)] dx , (3)

and the momentum densities S±(x) and integrals [S±] by

[S±] ≡
∫ 1

0
S±(x) dx ≡

∫ 1

0
x[s(x) ± s̄(x)] dx . (4)

In the QCD parton model, certain features of these quan-
tities are necessary.
(1) The parton distributions s(x,Q2) and s̄(x,Q2)3 [or
equivalently s±(x)], are parametrized at some low (but
still perturbative) scale Q0; the full Q-dependence is then
determined by DGLAP evolution.4
(2) The strangeness number sum rule for the nucleon re-
quires

[s−] = 0 (for all Q). (5)

A necessary corollary is that the density function s−(x)
must be less singular than 1/x as x → 0 for all Q. As
DGLAP evolution preserves (5) (which is a consequence

3 As we had done already in (3) and (4) above, we will suppress
the obvious Q2 dependence from now on.

4 For definiteness, the CTEQ PDFs evolve from Q0 = mc =
1.3 GeV.

of the conservation of the strange vector current Jµ
s =

ψ̄sγ
µψs), it suffices to impose it at Q0.

(3) The momentum sum rule requires

[S+] = 1 −Σ0 (for all Q), (6)

where Σ0 represents the momentum fraction of all non-
strange partons.Through this condition the global inclusive
DIS and other data – which directly affect Σ0 – indirectly
also constrain [S+].
(4) In the limit x → 0 (high energy and fixed Q), Regge
considerations and the Pomeranchuk theorem predict

s−(x)/s+(x) → 0 .

2.2 Expectations

From the above general constraints, we draw the following
conclusions.
(i) The number sum rule, (5), implies that a graph of s−(x)
must cross the x-axis at least once in the interval 0 < x < 1;
and the areas bounded by the curve above and below the
x-axis must be equal.
(ii) Assuming a simple scenario in which there is – as sup-
ported by theoretical models [2] based onΛ–K fluctuations
– only one zero crossing, either s−(x) < 0 in the low x re-
gion and s−(x) > 0 in the high x region, or vice versa. The
two possibilities imply [S−] > 0 or [S−] < 0, respectively,
because the momentum integral suppresses the small x re-
gion and enhances the large x region.
(iii) The low x behavior of |s−(x)| ∼ xβ− will then be
correlated with the size of |[S−]|: The steeper the function
s−(x), the larger |S−(x)| has to be at large x.

To illustrate point (ii), we preview a representative
CTEQ fit (to be discussed in full detail in Sect. 4) in Fig. 1
and juxtapose it with results from previous literature. Ac-
cording to the parametrizations of s(x) and s̄(x) used by
the CCFR-NuTeV dimuon study [1,12], s−(x) is negative
in the x range covered by the experiment (0.01 < x < 0.3).5

A previous detailed global analysis of inclusive data by
Barone et al. [4] (BPZ), finds that s−(x) is positive in the
large x region. These previous results are shown in Fig. 1
as the dot-dashed and dashed curves, respectively. In light
of the theoretical constraints discussed above, both these
results would hint at the first possibility mentioned above,
i.e. [S−] > 0. This is not the case, however, for the CCFR-
NuTeV curve, as it does not cross the x-axis; it violates
the strangeness number sum rule and cannot be taken to
represent the physics outside a limited window in x. The
BPZ curve does satisfy the sum rule; we note (Fig. 1) that
it has two zero-crossings. The solid curves (Class B) in the
two plots of Fig. 1 provide a concrete example of s−(x) and
S−(x) following the above requirements and expectations.

5 Since the preliminary version of this work was reported, the
CCFR-NuTeV collaboration has emphasized that their most
recent analysis favors an integrated strangeness asymmetry that
is consistent with zero [28]. More definitive studies are needed
to clarify the situation. See further discussions in Sect. 5.
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Fig. 1.Different functional behaviors of the strangeness number
asymmetry function s−(x) and momentum asymmetry function
S−(x): comparison of our central fit “B” (solid, discussed in
detail later in the text) with those of BPZ (dashed) and CCFR-
NuTeV (dot-dashed). The horizontal axis is linear in z ≡ x1/3 so
that both large and small x regions are adequately represented;
the functions are multiplied by a Jacobian factor dx/dz so that
the area under the curve is the corresponding integral over x

To illustrate point (iii), we preview various classes of
solutions (again, to be discussed in detail below) in the
upper plot of Fig. 2. Because the experimental constraints
are weak or non-existent in the very small x region, say x <
0.01, the detailed behavior of s−(x) is unconstrained in this
region. However, this uncertainty at small x is considerably
reduced in S−(x), as demonstrated by the curves of the
lower plot. Thus the above observations concerning [S−]
are affected only mildly by the uncertainty of the very
small x behavior, unless that behavior is so extreme that
the small x region provides a significant contribution to
the number sum rule. We will refrain from exploiting such
a mathematical possibility as long as it does not seem to
be motivated by any physics.6

6 A residual bias of the results on the assumed functional
forms, or rather on the rejection of some forms as merely math-
ematical and not physical, is unavoidable in parton analyses.
One can imagine the extreme (unphysical) scenario of spike-
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Fig. 2. Typical strangeness asymmetry s−(x) and the associ-
ated momentum asymmetry S−(x), as obtained in our global
analysis. The axes are the same as in Fig. 1

3 General parametrization
of the strangeness distributions

To explore the strangeness sector of the parton structure
of the nucleon, we need a suitable parametrization of s(x)
and s̄(x) (or equivalently s±(x)) at a fixed scale Q0. This
parametrization must satisfy the theoretical requirements
specified above, and it should be as general as possible so
that the allowed functional space can be fully explored.
A general form is essential, so that our conclusions are
not artifacts of the parametrization, but truly reflect the
experimental and theoretical constraints. In the following
we explain our choice of such a parametrization. Full details
including explicit parameters are given in the appendix.

It is more natural to parametrize the s±(x,Q0) func-
tions independently (rather than s and s̄) since they satisfy
different QCD evolution equations: pure non-singlet for s−
and mixed singlet/non-singlet for s+. We use the follow-
ing parametrizations:

s+(x,Q0) = A0 x
A1(1 − x)A2P+(x;A3, A4, . . .), (7)

like structures escaping “detection” in the x → 0 region but,
nevertheless, affecting sum rules.
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s−(x,Q0) = s+(x,Q0) (8)

× tanh[a xb(1 − x)cP−(x;x0, d, e, . . .)],

where P+(x;A3, . . .) is a positive definite, smooth function
in the interval (0, 1), depending on additional parameters
A3, . . . such as are used for u, d, g, . . . in most CTEQ [13]
and other global analyses [14,15], and

P−(x) =
(

1 − x

x0

) (
1 + dx+ ex2 + . . .

)
, (9)

where the crossingpointx0 is determinedby the strangeness
number sum rule [s−] = 0, and the parameters d, e, . . .
are optional, depending on how much detail is accessible
with the existing constraints. Important features of this
parametrization are the following.
(1) The strangeness quantum number sum rule, [s−] = 0, is
satisfiedby the choice ofx0. Theparameterx0 has aphysical
interpretation: it is the “crossing point” where s−(x) = 0.
(If d and/or e are not zero, there can be additional zeros
of s−(x); in practice – as explained in the previous section
and below in Sect. 4.2 – we restrict our analysis to solutions
with a single crossing only.)
(2) The fact that the tanh function has absolute value less
than 1 ensures positivity of s(x) and s̄(x). The fact that
tanh is a monotonic function guarantees that the function
s−(x) can be made as general as necessary by the choice
of P−(x).
(3) The small x behavior of s−(x) must be such that the
integral [s−] converges (before the root x0 is determined).
Let β− ≡ A1 + b; then (8) implies

s−(x) ∼ xβ− as x → 0. (10)

The convergence of [s−] is guaranteed if β− > −1, i.e. the
parameter b is chosen in the range b > −1 −A1.

Because P±(x) can be made as general as necessary, the
choice in (7)– (9) is capable of exploring the full strangeness
parameter space allowed by the data in the pQCD frame-
work.

Detailed formulas for all flavors used in the actual anal-
ysis are presented in the appendix.

4 Global analysis

We now describe the global QCD analysis, which includes
all relevant experimental data and implements the the-
oretical ideas outlined above. This may be considered an
extension of the on-goingCTEQprogramof global analysis.
Several new elements (compared to the latestCTEQ6M [13]
analysis) are present. On the experimental side, we have
added the CDHSW inclusive F2 and F3 data sets [16], and
the CCFR-NuTeV dimuon data sets [1]. On the theoretical
side, we have expanded the parameter space to include the
strangeness sector as discussed in Sect. 3.

Compared to the global analyses of BPZ [4], which also
allow for s �= s̄, the major difference experimentally is our
inclusion of the dimuon data, which provide a direct handle

on s and s̄, and, theoretically, the generality and natural-
ness of our parametrization of the strange distributions.7
Since the results of [4] on the strangeness asymmetry rely on
small differences of the inclusive DIS charged-current and
neutral-current measurements, BPZ performed the analy-
sis at the cross section level, applying uniform procedures
to treat data from different experiments in the comparison
to theory. Considering small differences between inclusive
cross sections, the possible strange asymmetry is but one
of many sources that could lead to such differences.

As the dimuon data more directly constrain the strange
PDFs, this is an important new element to our fit. For all
inclusive DIS processes we use the standard procedure of
comparing theory with the published F2 and F3 structure
function data. In our analysis, the fit to charged-current
(neutrino) inclusive structure functions is dominated by
the high statistics CCFR data. Although we have included
the earlier inclusive CDHSW data (which play a prominent
role in the analysis of [4]), they have no discernible influence
on the results presented below.

To include the CCFR-NuTeV neutrino and antineu-
trino dimuon production data in a global QCD analysis is
not a straightforward task. The experimental measurement
is presented as a series of forward differential cross sections
with kinematic cuts, whereas the theoretical quantities that
are most directly related to the parton distribution analysis
are the underlying (semi-) inclusive charm quark production
cross sections. The gap between the two is bridged using a
Monte Carlo program that incorporates kinematic cuts as
well as fragmentation and decay models. In our analysis,
we use a Pythia program provided by the CCFR-NuTeV
collaboration to do this efficiency correction.8 This Monte
Carlo calculation is done in the spirit and the framework
of leading-order (LO) QCD. CTEQ5L parton distributions
and Peterson fragmentation functions were used. The pa-
rameters of the model were tuned to reproduce, as closely
as possible, the detailed differential dimuon cross sections
published in [1].

4.1 dσνn→cx in QCD

At LO in pQCD, the cross section formula for νN → cX
is [17]

ξs′(ξ,Q2)eff ≡ 1
2

π(1 +Q2/M2
W )2

G2
FMNEν

|Vcs|−2 d2σνN→cX

dx dy

=
(

1 − m2
c

2MNEνξ

)
ξs′(ξ,Q2) + O(αs),

(11)

with the CKM matrix element |Vcs| and where the Barnett–
Gottschalk parameter [18,19]

ξ ≡ x

(
1 +

m2
c

Q2

)
(12)

7 Reference [4] parametrizes s(x) and s̄(x) rather than s±(x).
8 We thank Tim Bolton and Max Goncharov, in particular,

for providing this program, as well as assistance in its use. Their
help was vital for carrying out this project.
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approaches the Bjorken variable x as Q → ∞ (relative
to mc = 1.3 GeV). The quantity s′(ξ,Q2)eff in (11) in-
cludes Cabibbo suppressed contributions in neutrino scat-
tering via

s′ ≡ s+
|Vcs|2
|Vcd|2

d, (13)

with obvious adjustments for the antineutrino case.9
The NLO corrections to ξs′(ξ,Q2)eff , defined via the

perturbative series

ξs′(ξ,Q2)eff =
∑

i

αi
s ξs

′(ξ,Q2)(i)eff , (14)

are generically of the form

ξs′(ξ,Q2)(1)eff ∝
∑

f=g,s′
f ⊗Hf , (15)

with ⊗ denoting a convolution integral over parton mo-
mentum. These were first calculated more than 20 years
ago [19]. Later calculations [17, 20] corrected minor ty-
pos and employed the modern MS renormalization scheme
and the ACOT treatment [21] of amplitudes with massive
quarks (ms,c �= 0). Very recently, the NLO charm produc-
tion contributions to the full set of electroweak structure
functions were calculated [22], including terms that are sup-
pressed bym2

µ/MEν . In order to apply detector acceptance
corrections to the data [1], differential NLO distributions
were calculated in [23, 24] that provide the charm hadron
(D meson) kinematics in terms of the fragmentation vari-
able z and rapidity η. The dσ/dxdydzdη code DISCO [24],
written by two of the authors of the present article in col-
laboration with D. Mason of NuTeV, exists as an interface
to the NuTeV MC event generator. Detailed results can be
found in the articles listed above. It suffices to say that
(i) the NLO calculations all agree, and
(ii) for the fixed target kinematics under investigation, the
NLO corrections to the LO results are modest – no bigger
than � 20% (see Fig. 1 in [17]).

As mentioned before, the global fits performed in our
study are extensions of the full NLO CTEQ6 analysis with
the addition of constraints due to neutrino dimuon produc-
tion. For the latter process, we have done extensive studies
using either the LO formula, (11), or the NLO treatment
of [17], (15). The results obtained in the two cases are
quite similar. For definiteness, the main results presented
in Sect. 4.3 are those obtained by using (11), since the ac-
ceptance corrections made to the data set are currently
based on a LO model, as mentioned earlier. Since we have
determined that the NLO corrections to the hard cross sec-
tion are small (compared to the experimental errors, for
instance), and since we found the uncertainty range of the
main result (on [S−]) is much broader than the difference
between the central values obtained by using (11) with or
without the corrections in (15) (cf. Sect. 5), this approxi-
mation does not affect the outcome of our analysis.10

9 q → q̄ for q = s, d.
10 It is certainly desirable to have the inclusive cross sections
corrected for acceptance based on NLO models (such as [24]),

4.2 Procedure

Our analysis is carried out in several stages. First we must
find appropriate starting values for the fitting parameters.
For this purpose, we implement the following steps.
(1) We rerun the CTEQ6M global fit with the added
CDHSW inclusive neutrino scattering data, keeping all
other conditions the same. This intermediate fit is ex-
tremely close to the CTEQ6M one, since the fit to inclusive
DIS data is totally dominated by the high statistics neu-
tral current experiments on the one hand and the CCFR
charged current experiment on the other.
(2) We then fix all of the conventional parton parameters
to their values in this intermediate fit, and fit the complete
set of data, including the new dimuon data, by varying only
the parameters associated with the new degrees of freedom
in s−. We obtain results consistent with expectations.
(i) Most of the data sets used in the previous analysis are
not affected at all by the variation in s−.
(ii) A few fully inclusive cross sections are slightly affected
by the variation of s−; mainly
(a) F3 which depends on u− ū+ d− d̄+ s− s̄ . . .;
(b) the W± charge asymmetry which receives a contribu-
tion from gs → W−c. The sensitivities to s− are weak.
(iii) The CCFR-NuTeV dimuon data sets are the most
constraining ones for fitting s−(x).

We obtain good fits using either the 3-parameter (a, b, c)
or the 4- or 5-parameter (a, b, c, d, e) versions of (8) and (9).
There are not enough constraints to choose among these
fits. The higher-order polynomials allow oscillatory behav-
ior of s−(x) which the 3-parameter form does not. We
consider the number of crossings a distinctive property of
the physical asymmetry s−(x) rather than a volatile func-
tion of the continuous fit parameter space. As explained
in Sect. 2, one zero-crossing is unavoidably enforced by the
sum rule in (5). We are not aware of any solid theoretical
argument that would suggest a second crossing; nor do we
find that the fits show any preference for more than one
crossing. We therefore restrict the search for best fits in
this section to one crossing. This choice also seems to be a
stable feature of models [2] based on baryon–meson fluc-
tuations.
(3) Using these candidate fits as a basis, we perform a
second round of fitting allowing the parameters associated
with s+, (7), to vary in addition to the s− variables. This
improves the fit to all data sets slightly. We observe that the
shape of s+(x) now deviates from the starting configuration
in which s+(x) was set proportional to ū(x)+ d̄(x). Defin-
ing, as in (1), the strangeness suppression parameter κ as
the ratio of the momentum fraction carried by the strange
quarks, [S+], to that carried by ū+ d̄ at Q0 = 1.3 GeV, we
find that κ may vary in the range 0.3–0.5: χ2 has a shallow
minimum around κ = 0.4. This value agrees with previous
analyses [11].

Because the experimental constraints are not sufficient
to uniquely determine all the s− and s+ parameters, we

that can be compared to (15) in a full NLO global analysis. This
is under active development by a theory (CTEQ)–experiment
(CCFR-NuTeV) collaboration.
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categorize several classes of equally good solutions based
on the behavior of s−(x)/s+(x) as x → 0 or x → 1.
(4) We finalize these classes of solutions by allowing all
parton parameters to vary so that the non-strange parton
distributions can adjust themselves to yield the best fit to
all the experimental data sets. (As one would expect, these
final adjustments are generally small.) The differences in
theχ2 values between the various categories of solutions are
not significant; i.e. we find nearly degenerate minima with
distinctively different s−(x) solutions, classified according
to their smallx behavior. These solutions do not correspond
to isolated local minima in χ2 space; rather they are to be
thought of as specific examples of a class of acceptable fits
that lie along a nearly flat “valley” along which χ2 changes
very slowly.

4.3 Central results

The quality of the fits to the global data sets other than
the CCFR-NuTeV dimuon data remains unaltered from
the previous CTEQ6M analysis, so we focus our discussion
on the strangeness sector. Specifically, we examine closely
the asymmetry functions s−(x), S−(x) and the momentum
integral [S−]. The asymmetry functions from three typical
good fits, with different behaviors at small x (labeled as
classes A, B, C), were previewed in Fig. 2 as illustrations.

In the accompanying table, Table 1, for each sample fit
we list the small x exponent β− [s−(x) ∼ xβ− , cf. (10)],
the integrated momentum fraction [S−], and the relative
χ2 values, normalized to the χ2 of solution B (χ2

B), which
we use as the reference for comparison purposes. (Under
column “B”, we give the absolute χ2’s in parentheses.11)
To gain some insight on the constraints on the strangeness
sector due to the various types of experiments, we show sep-
arately the χ2 values for the dimuon data sets, the inclusive
data sets (I) that are expected to be somewhat sensitive
to s− (consisting of the CCFR and CDHSW F3(x,Q) and
the CDF W -lepton asymmetry measurements), and the
remaining data sets (II) that are only indirectly affected
by s− (the rest of the inclusive data sets).

Focusing on the three good fits {A, B, C} first, we note
the following features.
(1) All three solutions {A, B, C} feature positive [S−]; and
the more singular the behavior of s−(x) asx → 0, the higher
the value of [S−]. These are natural consequences of the
strangeness sum rule (equal +/− areas under the curve
of s−(x)) and the small x suppression of the momentum
integral, as discussed earlier in Sect. 2.
(2) Solution B is slightly favored over the other two. This,
11 The χ2 values of the dimuon data sets, like those of some
other data sets, do not carry rigorous statistical significance,
because the correlated systematic errors are not available and,
hence, cannot be included. In the global analysis context, the
χ2 value is nevertheless used as the only practical “figure of
merit” for the fit. The relatively small value of the total χ2 for
the dimuon data sets, compared to the number of data points,
underlines this fact. Under this circumstance, it is common
practice to use the normalized χ2 values to compare the quality
of different fits.

plus the fact that its small x behavior lies in the middle of
the favored range, motivates its use as the reference fit.
(3) We chose these examples among fits with the simplest
parametrizations: all cross the x axis only once. With four
or five parameters, which can allow for more than one
crossing point, many solutions can be found that entail an
oscillatory s−(x). But since the χ2 values are essentially
the same as for the simple case, we deem it premature
to dwell on complicated behaviors, which may be mere
artifacts of the parametrization rather than reflections of
physical constraints. Further studies described in Sect. 4.5
reinforce this point.

To show how these fits compare with the data, we plot
in Fig. 3 the ratio of data/theory for the reference fit B. The
four graphs correspond to the CCFR and NuTeV neutrino
and antineutrino data sets respectively. The data points
are sorted in x-bins, and within each x-bin, by y value. We
see that the quality of the fit is good, within the experi-
mental uncertainties. There are no significant systematic
deviations. (The CCFR antineutrino data set may appear
to be systematically higher than theory. However, upon
closer inspection the difference is not significant. The data
points that lie above theory consist mostly of points with
large error bars, which tend to catch the attention of the
eye; whereas the fit is actually dominated by points with
small errors, which closely bracket the theory line on both
sides.12 The value of χ2/N for this data set is less than 1,
comparable to those for the other sets.)

The parameters for all the fits described in this section
are given in detail in the appendix. As is already obvious
from Fig. 2, solutions with nearly degenerate χ2 may cor-
respond to parametrizations of s−(x) with quite different
parameter values, so that a simple linear error analysis
cannot be applied. This reflects the fact that s−(x) is not
well determined as a detailed function of x, even when the
dimuon data are included in the fit. On the other hand, re-
ducing the parameter space to even fewer parameters than
ourminimal setwould risk introducing artifacts of an inflex-
ible parametrization. In the next section we will, therefore,
apply the Lagrangian multiplier method to deduce the in-
tegrated momentum asymmetry [S−] and its uncertainty.

4.4 Range of [S−] by the Lagrange multiplier method

Beyond the best fits (A, B, C), we can study the range of
[S−] consistent with our global analysis in a quantitative
way by applying the Lagrange multiplier (LM) method de-
veloped in [25]. By varying the Lagrange multiplier param-
eter, this method explores the entire strangeness parameter
space in search of solutions with specified values of [S−],
i.e., constrained fits. The B− solution listed in Table 1 was
obtained by forcing [S−] = −0.0018 (a relatively large neg-
ative value, but not as large as the value −0.0027 quoted
by [6,12]). The B+ solution was generated by forcing [S−]
to go in the other (positive) direction until the increment
of the overall χ2 became comparable to that of B−; this
results in [S−] = 0.0054.
12 This becomes apparent if the data points are re-plotted
ordered by the size of the error bars.
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Table 1. The representative parton distribution sets, arranged in order by the value of [S−]

# pts B+ A B C B−

β− – −0.78 −0.99 −0.78 0 −0.78
[S−] × 100 – 0.540 0.312 0.160 0.103 −0.177
Dimuon 174 1.30 1.02 1.00 (126) 1.01 1.26
Inclusive I 194 0.98 0.97 1.00 (141) 1.03 1.09
Inclusive II 2097 1.00 1.00 1.00 (2349) 1.00 1.00
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Fig. 3. Comparison of the data to fit B. The
data points are sorted in x-bins, and within
each x-bin, by y value. The CCFR ν and ν̄
data span kinematic ranges 0.023 < x < 0.336,
0.320 < y < 0.795 and 0.018 < x < 0.21,
0.355 < y < 0.802 respectively. The NuTeV ν
and ν̄ data span kinematic ranges 0.021 < x <
0.324, 0.334 < y < 0.79 and 0.016 < x < 0.211,
0.356 < y < 0.788 respectively

We see from the relevant entries in Table 1 that
(i) the χ2 values of the dimuon data sets increase by about
30% in both B± fits;
(ii) the “inclusive I”data sets disfavor thenegative [S−], and
(iii) the “inclusive II” data sets are completely neutral.
These results are shown graphically in Fig. 4a, where the
square points represent the (relative) χ2 values of the
dimuon data sets, and the triangle points of the “inclu-
sive I” data sets. (Not shown are those for the “inclusive
II” data sets, which remain flat (at 1.00).) The LM fits
are chosen from a large number of fits spanning the entire
strangeness parameter space. The pattern of dependence
of the χ2 values for the dimuon data sets on the value
of [S−] is nearly parabolic. This is clear evidence that the
dimuon measurement is indeed sensitive to the strangeness
asymmetry as expected. Further discussion of this obser-
vation, including the contrast to the sensitivity of other
experiments, will be given in Sect. 4.5.

We see from Fig. 4a that, in this series of fits, the dimuon
data sets favor a range of [S−] centered around 0.0017,
whereas the “inclusive I” data sets disfavor negative val-
ues of [S−]. Figure 4b shows the dependence of the com-
bined χ2 of the two categories of data sets on [S−]. (The
χ2 of the remaining data sets used in the global analysis
are totally insensitive to [S−], cf. Table 1, hence is not
included in this plot.) We would like to determine a “range
of uncertainty” of [S−] from these results. This is far from
straightforward because of well-known problems shared by
all error assessments in global analysis (mainly due to the

unquantified systematic errors that show up as a lack of
statistical compatibility among the input data sets).13

One naive method is to apply the ∆χ2 = 1 crite-
rion. From the parabola in Fig. 4b, which comes from 368
data points, this “estimation-of-parameters criterion” cor-
responds to an uncertainty of [S−] of ±0.0005. (Cf. the
lowest horizontal line in Fig. 4b.) It has been known, how-
ever, that the ∆χ2 = 1 criterion is unrealistic in global
analysis when combining data sets with diverse system-
atic errors from many different experiments [13,25,26]; in
this circumstance, the overall χ2 function provides a sim-
ple measure of relative goodness-of-fit in the minimization
process, but it does not have the strict statistical signif-
icance of a pure parameter fitting problem as presented
in textbook examples. This estimate of the uncertainty of
[S−] is far too small.

Another often-used method to evaluate “goodness-of-
fit” is to apply the cumulative distribution function P for
the χ2 distribution. One considers unacceptable values of
χ2 greater than χ2

68 (or χ2
90) where P (χ2 < χ2

f ) = f . For
386 data points, the 68% (90%) criterion corresponds to
χ2/χ2

min = 1.033 (1.1) respectively. These two criteria are
represented by the two upper horizontal lines in Fig. 4b.
The uncertainty ranges of [S−] for these two cases are
±0.002 (0.003) respectively.

13 These difficulties, and practical methods to handle them,
are discussed in detail in [13,25,26].



152 F. Olness et al.: Neutrino dimuon production and the strangeness asymmetry of the nucleon

The extensive studies on quantifying uncertainties in
the global analysis context [13,25,26] suggest that for this
case a realistic range should be somewhere between the
two extreme cases shown in Fig. 4b. Hence we adopt the
uncertainty range 0 < [S−] < 0.004 by this analysis, which
corresponds to the middle horizontal line in the graph (or
the χ2

68 criterion). Whereas a very small strangeness asym-
metry, consistentwith zero, is not ruled out by this criterion,
large negative values of [S−] (such as −0.0027, cited in [12])
are strongly disfavored; cf. also Table 1. Additional sources
of uncertainty will be discussed in the following section.

4.5 Additional sources of uncertainty

We have performed three series of studies to further as-
sess the robustness of our main results. These will help us
to determine a better estimate of the overall uncertainty
of [S−].

Pure leading order fits

Since the experimental analyses of the CCFR-NuTeV di-
muon data have been done in LO QCD [1, 12], we have
carried out a whole series of purely LO global analyses,
following the same procedures as outlined above, in order
to provide a basis for comparison. The results can be sum-
marized as follows.
(1) The overall χ2 for the global fit increased by ∼ 200 over
the comparable fits described above; while the χ2’s for the
dimuon data sets actually decreased slightly. This is not
surprising, since the current state of global analysis, with
precision data from many experiments, requires the use
of NLO QCD theory – in particular for the collider data
with typically large perturbative corrections. On the other
hand, the new dimuon data still have comparably large
experimental errors and the NLO corrections are small
[O(� 20%)], such that an LO fit is adequate for them.
(2) We explored the allowed range of strangeness asym-
metry [S−] in this LO study under different assumptions
on the x → 0 and x → 1 behavior of the s+(x) and s−(x)
functions. First, we found that the dependence of χ2

dimuon
on [S−] is generally parabolic, rather similar to Fig. 4. The
width of the distribution is comparable to Fig. 4. The cen-
tral value for [S−] is within the range (0, 0.0015); the exact
value depends on thex → 0 andx → 1 behavior of s±(x) as-
sumed.
(3) We also found that the χ2

inclusive I versus [S−] curve,
while generally flatter, does “flop around” enough for the
cases studied so that no clear pattern can be discerned.
The specific shape of this curve shown in Fig. 3 is not a
common characteristic of these fits.

Charm mass dependence

The CCFR-NuTeV dimuon analysis treated the charm
mass as one of the fit parameters. Their analyses favored a
rather high value of mc = 1.6 GeV (compared to, e.g., the

a
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Fig. 4. Values of χ2/χ2
B versus [S−] by the Lagrange multiplier

method in global analysis. Panel a shows the dimuon data sets
(�) and the “Inclusive I” data sets (�) separately, and b shows
these data sets combined (�). (Cf. text and Table 1)

PDG estimate of 1.0 GeV < mc < 1.4 GeV). The CTEQ
global analyses are usually done with a fixed value ofmc =
1.3 GeV. To see whether the comparison between our re-
sults is strongly influenced by the choice of the charm mass,
we have performed several series of fits with mc varying
from 1.3 GeV to 1.7 GeV. Again, the general features, as
described above, stay the same. The central value of [S−]
does vary with the choice of mc within a given series of
fits, but the pattern is not universal. The range over which
the central value wanders is of the order ∼ 0.0015, com-
parable to the width of the parabola in Fig. 4. Unlike the
specific analysis of CCFR-NuTeV, the overall χ2 for the
global analysis does favor a lower value of mc.



F. Olness et al.: Neutrino dimuon production and the strangeness asymmetry of the nucleon 153

Dependence on decay and fragmentation model

To estimate the dependence of our results on the model
used to convert the measured dimuon cross sections to
structure functions for charm production, we repeated our
analyses using an alternative conversion table, provided by
the CCFR-NuTeV collaboration.14 This alternative table
is based on Buras–Gaemers PDFs used in CCFR-NuTeV
analyses with Collins–Spiller fragmentation functions. It is
similarly tuned to detailed features of the measured dimuon
cross sections as that described in Sect. 4.2.15 The results
obtained from the alternative fits are, again, similar to
those described earlier. The χ2

dimuon versus [S−] parabola
generally has the same width as in Fig. 4. The central value
for [S−] is in the range 0 < [S−] < 0.0015 – in the lower half
of the range quoted at the end of Sect. 4.4. The dependence
of χ2

inclusive I on [S−] shows no definitive trend.
Taken together, the results of the additional studies

described in these three paragraphs lead to several conclu-
sions.
(i) The general features described in Sects. 4.3 and 4.4 are
robust;
(ii) the central value of [S−] wanders around within a range
that is consistent with the width of the χ2

dimuon versus [S−]
parabola, and
(iii) these additional results do not significantly change the
estimates of the previous section, except to shift the central
estimated value of [S−] to a slightly lower value, and to ex-
tend the range of uncertainty on the lower side somewhat.
The envelope of these additional uncertainties provides an
estimated range of uncertainty of the strangeness asym-
metry of16

−0.001 < [S−] < 0.004 . (16)

This large range reflects both the limit of current experi-
mental constraints and the considerable theoretical uncer-
tainty, as explicitly discussed in the text. The theoretical
uncertainties can be reduced in a refined NLO analysis;
the results remain to be seen. The limitations on the ex-
perimental constraints will remain, until new experiments
are done.

5 Comparisons to previous studies

A comprehensive global QCD analysis with emphasis on
the strangeness sector has been carried out previously by
BPZ [4].17 Without the dimuon data, which are directly
sensitive to strangeness, the results of BPZ implicitly rely
14 We thank Kevin MacFarland for supplying this table.
15 However, since our CTEQ6-like PDFs are rather different
from the CCFR Buras–Gaemers PDFs, it is not clear how good
the approximation is to use this conversion table. That is, the
self-consistency of the procedure is not assured.
16 The uncertainties from the various sources need not be com-
bined in quadrature, because they are not statistically indepen-
dent sources, but rather systematic uncertainties of the theory.
17 As mentioned in Sect. 4, BPZ work directly with DIS cross
sections (instead of structure functions), with detailed attention
to systematic errors and other sources of uncertainties.

on small differences between large neutral- and charged-
current inclusive cross sections from different experiments.
The latest representative s−(x) and S−(x) functions ex-
tracted by BPZ are shown in Fig. 1, along with our refer-
ence fit B. The main feature of the BPZ curves is a positive
bump at rather large x.18 This feature has been attributed
to the influence of the CDHSW data, particularly when
re-analyzed at the cross section level along with the other
DIS experiments. Their conclusion that the data favor a
positive value of the momentum integral [S−] is in gen-
eral agreement with our detailed study based on the LM
method. However, the different shapes of s−(x) seen in
Fig. 1 clearly underline the difference in inputs:
(i) our results are mainly dictated by the CCFR-NuTeV
dimuon data (which are not present in the BPZ analysis);
(ii) their results rely on a delicate analysis of DIS cross-
section data (not matched in our structure function anal-
ysis), and
(iii) the difference in flexibility of the parametrizations of
the non-perturbative input functions can influence the re-
sults.

The CCFR and NuTeV collaborations performed sep-
arate and combined analyses of s and s̄ [1], based on their
own dimuon and inclusive cross sections. To parameterize
the s(x) and s̄(x) distributions, they chose the model for-
mula(

s(x,Q)
s̄(x,Q)

)
=
ū(x,Q) + d̄(x,Q)

2

(
κ(1 − x)α

κ̄(1 − x)ᾱ

)
(17)

for all {x,Q}, where κ, κ̄, α, ᾱ are fitting parameters.
Curves representing the general behavior of the model

(17) at Q2 = 10 GeV2, with parameter values (κ, κ̄, α, ᾱ)
taken from [1], have been shown in Fig. 1 for comparison
with the other distributions. While this model might be
acceptable for a limited range of x and Q, it leads to prob-
lems when extrapolated to general {x,Q} values:
(i) the strangeness number sum rule [s−] = 0 is violated
(in fact, the integral [s−] diverges unless κ = κ̄), as is the
momentum sum rule, (6);
(ii) the QCD evolution equations are violated by the Q-
dependent paramaterizations of thePDFs.19 Thefirst prob-
lem is evident in Fig. 1.20

It could be argued that, since the experiment only covers
a limited range of x, the enforcement of the sum rules is
not critical in extracting limited information on s(x,Q)
18 The BPZ curve displayed includes the more recent analysis
“with CCFR (inclusive data).” The original “without CCFR”
solution in [4] has a more pronounced large x bump and a
smaller negative region. An s−(x) function of such magnitude
at large x is in disagreement with the CCFR-NuTeV analysis; in
addition, it would make s(x) and s̄(x) behave quite differently
compared with the non-strange sea quarks and the gluon, i.e.,
∼ (1 − x)p, with p in the range 5–10.
19 These problems are independent of the specific issues of the
strange quark asymmetry.
20 Re-analysis of the CCFR-NuTeV data by the experimental
group, taking into account these issues, are underway. Initial
results from partial implementations of the above-mentioned
theoretical constraints were reported by [29].
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Table 2. The coefficients of the “standard fit” (B-fit) described in Sect. 4.3

B-fit A0 A1 A2 A3 A4 A5

dv 1.55891 0.62792 5.08865 0.70688 −0.26338 3.00000
uv 1.73352 0.55260 2.90090 −2.63846 1.45774 1.85987
g 31.24912 0.52014 2.38230 4.23010 2.33765 −3.00000
d̄/ū – 10.23811 5.19599 14.85860 17.00000 8.68941
ū + d̄ 0.06758 −0.29681 7.71700 −0.82223 4.43481 0.66711
s + s̄ 0.04966 0.03510 7.44149 −1.44570 5.13400 0.59659
s − s̄ −0.08438 0.18803 2.36708 0.04590 0.00000 0.00000

and s̄(x,Q). Given this, the CCFR curve in Fig. 1 implies
negative s−(x) over most of the experimentalx range (0.01–
0.3).21 The uncertainty is smaller at the lowerx end because
of better statistics. It is this feature of the data that we
invoked in the general discussion of Sect. 2.

To describe the behavior of s−(x) over the full x range,
the strangeness number sum rule must be enforced. The
sum rule also provides a powerful theoretical constraint on
the data analysis, as demonstrated in Sects. 2 and 4. For
functions to be candidate universal parton distributions
of the pQCD formalism, they must satisfy both the sum
rules and the QCD evolution equations.

6 Conclusion

We find a range of solutions in the strangeness sector
that are consistent with all relevant world data used in
the global analysis. The dimuon data are vital in con-
straining the strangeness asymmetry parameters. The con-
straints provided by other inclusive measurements, labeled
as “inclusive I” in the text, are consistent with those pro-
vided by dimuon data, although much weaker. The al-
lowed solutions generally prefer the momentum integral
[S−] ≡ ∫ 1

0 x[s(x)− s̄(x)] dx to be positive. This conclusion
is quite robust, and it follows from the basic properties
of pQCD and from qualitative features of the experimen-
tal data. However, the size of this strangeness momentum
asymmetry is still quite uncertain; we can only estimate
that [S−] lies in the range from −0.001 to +0.004. The La-
grangemultipliermethod explicitly demonstrates that both
the dimuon data and the “inclusive I” data sets strongly
disfavor a large negative value of [S−], although they may
still be consistent with zero asymmetry.

The fact that [S−] has a large uncertainty has significant
implications for the precision measurement of the weak
mixing angle, sin2 θW, from neutrino scattering. This issue
is studied separately in [8].

This paper marks the first global QCD analysis incorpo-
rating direct experimental constraints on the strangeness
sector. We have so far focused only on the strangeness
asymmetry, which represents a new frontier in parton de-
grees of freedom. Much still needs to be done to improve
the treatment of the dimuon data (to true NLO accuracy),

21 This is consistent with the fact that (without the constraint
of sum rules) [12] quotes [S−] = −0.0027 ± 0.0013.

and to fully explore all the degrees of freedom associated
with s+(x) and s−(x). As progress is made on these fronts,
the uncertainty on [S−] will no doubt decrease as well.

Note added. After this manuscript was completed an inves-
tigation of the 3-loop perturbative strangeness asymmetry
was presented in [27].
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Appendix

In this appendix, we provide some detailed information on
the parametrization of the non-perturbative parton distri-
bution functions used in our global analysis work, as well
as the values of the parameters for the representative fits.

The non-strange parton distributions at Q = Q0 =
1.3 GeV are parametrized as in CTEQ6. We use

x f(x,Q0) = A0 x
A1 (1 − x)A2 eA3x (1 + eA4x)A5 (18)

with independent parameters for parton flavor combina-
tions uv ≡ u− ū, dv ≡ d− d̄, g, and ū+ d̄. To distinguish
the d̄ and ū distributions, we parametrize the ratio d̄/ū,
as a sum of two terms:

d̄(x,Q0)/ū(x,Q0) (19)

= A1 x
A2 (1 − x)A3 + (1 +A4 x) (1 − x)A5 .

The strangeness sector is parametrized according to the
description of Sect. 3 with

xs+(x,Q0) = A0 x
A1 (1 − x)A2 eA3x (1 + eA4x)A5 ,
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Table 3. Coefficients for A-, C- and B+,− fit

A-fit A0 A1 A2 A3 A4 A5

dv 1.55485 0.62740 5.09550 0.70010 −0.25130 3.00000
uv 1.73345 0.55260 2.90090 −2.63740 1.45810 1.85910
g 31.05518 0.51840 2.38230 4.24730 −2.33790 3.00000
d̄/ū – 10.23920 5.19690 14.85860 17.00000 8.68530
ū + d̄ 0.06677 −0.29810 7.71700 −0.80540 4.45630 0.66420
s + s̄ 0.05133 0.06567 7.59880 −1.43972 5.13400 0.61715
s − s̄ −0.02000 −0.06562 −0.48403 0.01987 −0.58837 0.00000
C-fit A0 A1 A2 A3 A4 A5

dv 1.39587 0.60594 4.75379 −0.75291 0.31387 3.00000
uv 1.72080 0.55260 2.90090 −2.36331 1.60950 1.59812
g 29.40547 0.50423 2.38230 4.41409 2.34266 −3.00000
d̄/ū – 10.23202 5.19618 14.85860 17.00000 8.62620
ū + d̄ 0.06479 −0.30038 7.71700 −0.68604 4.61325 0.62988
s + s̄ 0.04289 0.00809 7.71700 −1.22365 5.13400 0.62988
s − s̄ −2.36926 0.99191 8.23499 0.07884 0.00000 0.00000
B+-fit A0 A1 A2 A3 A4 A5

dv 1.43611 0.61170 4.73270 −0.67420 0.24920 3.00000
uv 1.71921 0.55260 2.90090 −2.39220 1.60430 1.61490
g 29.76781 0.50800 2.38230 4.35570 −2.33860 3.00000
d̄/ū – 10.19560 5.16810 14.85860 17.00000 8.69760
ū + d̄ 0.06729 −0.29650 7.71700 −0.75670 4.52290 0.64380
s + s̄ 0.03456 0.00210 8.23420 −1.26970 5.13410 0.72501
s − s̄ −0.40480 0.22103 3.40190 0.04701 0.31550 0.00000
B−-fit A0 A1 A2 A3 A4 A5

dv 1.43611 0.61170 4.73270 −0.67420 0.24920 3.00000
uv 1.71921 0.55260 2.90090 −2.39220 1.60430 1.61490
g 29.76781 0.50800 2.38230 4.35570 −2.33860 3.00000
d̄/ū – 10.19560 5.16810 14.85860 17.00000 8.69760
ū + d̄ 0.06717 −0.29650 7.71700 −0.75670 4.52290 0.64380
s + s̄ 0.04356 0.00210 7.33918 −1.26970 5.13400 0.60083
s − s̄ 0.01781 0.22103 −15.02691 0.22693 −1.23666 0.00000

where the A1,2,3,4,5 coefficients are either equated to those
of ū + d̄, or allowed to vary independently, depending on
the particular fit being performed, and

s−(x,Q0) = s+(x,Q0)

× tanh
[
A0 x

A1(1 − x)A2

(
1 − x

A3

)(
1 +A4 x+A5 x

2)] .
As an example, the “standard fit” (B-fit) described in

Sect. 4.3 has the coefficients of Table 2.
The other sample fits have coefficients as in Table 3.
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